Joint Trauma System # Extremity Compartment Syndrome (CS) and the Role of Fasciotomy in Extremity War Wounds Part of the Joint Trauma System (JTS) Clinical Practice Guideline (CPG) Training Series #### **Purpose** This CPG provides evidence—based guidelines for the evaluation and treatment of patients with extremity war wounds and the role of prophylactic and therapeutic fasciotomy. This presentation is based on the <u>JTS Acute Extremity Compartment Syndrome (CS) and the Role of Fasciotomy in Extremity War Wounds CPG, 25 Jul 2016 (ID:17).</u> It is a high-level review. Please refer to the complete CPG for detailed instructions. Information contained in this presentation is only a guideline and not a substitute for clinical judgment. # **Agenda** - 1. Summary - 2. Background - 3. Signs & Symptoms - 4. Evaluation - 5. Treatment - 6. Risk Assessment - 7. Performance Improvement (PI) Monitoring - 8. References - 9. Appendices - 10. Contributors # Summary - Compartment syndrome requires immediate operative intervention. - Prophylactic compartment syndrome is indicated if there is substantial risk of compartment syndrome. ## **Background** Military trauma patients in general have higher overall trauma burdens and occur in remote locations compared to civilian trauma. Compartment syndrome is a common and disabling problem in extremity war injuries. ☐ 15% of all military orthopedic trauma casualties require a fasciotomy. Compartment syndrome is a clinical syndrome where high pressure with a myofascial space reduces perfusion and decreases tissue viability. ☐ Therapeutic Fasciotomy Indication: Established compartment syndrome ☐ **Prophylactic Fasciotomy Indication**: Substantial risk of compartment syndrome ## **Background** - Compartment syndrome can be lethal. Early diagnosis challenging. - Prophylactic fasciotomy used in "at risk" fractures and patients with prolonged ischemia/following limb perfusion. - ☐ Difficulties associated with monitoring a patient's physical exam during lengthy transport combined with inability to intervene during time should be considered. # **Background** | Risks for Acute Traumatic Compartment Syndrome | | |--|--| | Decreased
Compartment
Volume | Tight cast or dressing, closure of prior fasciotomy, excess traction External limb compression or crush particularly in obtunded or incapacitated casualty Frostbite, burns or electric injury (may include escharotomy) | | Increased
Compartment
Contents | Edema accumulation: embolism, intravascular thrombosis, replantation, venous
tourniquet, injections, extravasation, infiltration, ergotamine ingestion, ischemia-
reperfusion, swelling, artery injury or spasm, revascularization procedures, prolonged
arterial tourniquet use, shock hypoperfusion, angiography and catheterization, limbs
positioned well above heart, mal-positioned joints (ankle dorsiflexion,) or stretched
muscles | | | Prolonged immobilization and limb compression particularly with obtunded or drugged casualty, some surgical positioning Hemorrhage, hemophilia, coagulopathy, anticoagulation, vessel injury Large volume crystalloid resuscitation Fractures particularly tibia fractures in adults, supracondylar humerus fractures in children displaced, comminuted, or open fractures increase hemorrhage, swelling, and CS risk Popliteal cyst, long leg brace | # **Signs & Symptoms** #### **Signs and Symptoms:** - Pain out of Proportion: Most important. Often obscured in combat casualties due to altered mental status/heavy sedation. - Palpably tense muscle compartments: Specific. Not sensitive. Highly subjective. - Paralysis: Can be due to direct neural trauma. - Paresthesia: Can be due to direct neural trauma. - Pulselessness: Late and ominous sign in civilian trauma. Occurs more commonly and potentially within minutes in military trauma. #### Evaluation (1) - Tissue edema peaks at 24-48 hours, but vigilance should be maintained for a week. - ☐ Delayed Presentation Higher Concern in: sequential surgical procedures, ongoing resuscitation, and/or ischemia-reperfusion. - Passive stretch pain, palpation of muscles for tenseness and pulse quality combined with index of suspicion make up mainstay of evaluation. - ☐ Most caused by open fractures, even with traumatic fasciotomy. - ☐ Tibia fracture associated with 45% of compartment syndromes. - Suggest serial exams hourly when risk is high and less frequently when risk is low. #### Evaluation (2) - Pressure measurement of compartments has significant limitations and is not recommended for routine use in theatre. - In the absence of crush injury, fracture, multiple trauma, over resuscitation, electoral injury, or similar injury, prophylactic fasciotomy on burned extremities are not indicated. #### Treatment (1) - Diagnosis of compartment syndrome requires immediate intervention. - ☐ Delayed or incomplete compartment syndrome has been associated with increased mortality and need for amputation - Any limb at risk of compartment syndrome in an austere location should undergo prophylactic fasciotomy when they reach a fixed surgical facility. #### Treatment (2) - Patients with compartment syndrome that experience delayed evacuation over 12 hours with nonviable muscle should not have fasciotomy performed. - ☐ Situation associated with increased risk of complication. - ☐ Patients are best treated with appropriate resuscitation, urine alkalization, mannitol use, and intensive support. - Once decision is made to perform compartment release, all compartments in the affected anatomic region are over their entire length. #### Treatment (3) - Specific surgical expectations during fasciotomies: - Calf: Two incision technique - Forearm: Superficial and deep volar compartments through incision from lacertus fibrosus to carpal tunnel - Foot Fasciotomy: Consequences of fasciotomy can be worse then compartment syndrome. Carefully weigh advantages and disadvantages. - Most commonly missed compartment syndromes are anterior and deep posterior compartments of the calf. - Most common incomplete releases are in the calf. #### **Risk Assessment** #### **Risk Assessment for Extremity Compartment Syndrome** ## PI Monitoring #### **■** Intent (Expected Outcomes) - ☐ When fasciotomy is performed, all compartments are completely released through full skin and fascial incisions. - When indicated, fasciotomy is performed at the time of re-vascularization of an ischemic extremity. #### Performance/Adherence Measures - When fasciotomy was performed, there was complete release of all compartments through full skin and fascial incisions. - ☐ When indicated in patients with ischemic extremities, fasciotomy was performed at the time of re-vascularization. #### Data Source - Patient Record - Department of Defense Trauma Registry (DoDTR) #### References - 1. Shore BJ, Glotzbecker MP, Zurakowski D, et al Acute compartment syndrome in children and teenagers with tibial shaft fractures: incidence and multivariable risk factors. J Orthop Trauma. 2013 Nov; 27(11):616-21. - 2. Ziran BH, Becher SJ. J Orthop. Radiographic predictors of compartment syndrome in tibial plateau fractures. Trauma. 2013 Nov; 27(11):612-5. - 3. Park S, Ahn J, Gee AO, et al. Compartment syndrome in tibial fractures. J Orthop Trauma. 2009 Aug; 23(7):514-8. - 4. McQueen MM, Duckworth AD, Aitken SA, et al Predictors of compartment syndrome after tibial fracture. J Orthop Trauma. 2015 Apr 9. - 5. Shadgan B, Pereira G, Menon M, et al Risk factors for acute compartment syndrome of the leg associated with tibial diaphyseal fractures in adults. J Orthop Traumatol. 2014 Dec 28. - 6. Kragh JF Jr, Wade CE, Baer DG, et al Fasciotomy rates in operations enduring freedom and iraqi freedom: association with injury severity and tourniquet use. Orthop Trauma. 2011 Mar; 25(3):134-9. - 7. Ritenour AE, Dorlac WC, Fang R, et al. Complications after fasciotomy revision and delayed compartment release in combat patients. J Trauma. 2008; 64(2 Suppl):S153-61; discussion S161-2. Landstuhl cohort. Inadequate fasciotomy risks mortality. Surgeons should have this. - 8. Mubarak SJ, Hargens AR. Compartment Syndromes and Volkmann's Contracture. Saunders, Philadelphia, 1981. - 9. US Army, Medical Research and Materiel Command. Compartment Syndrome: Diagnosis and Surgical Management DVD, 2008. 90 minutes, how to do surgery. - 10. Office of The US Army Surgeon General, Health Policy and Services (HP&S) Directorate, All Army Action Order, Complications after fasciotomy revision and delayed compartment release in combat patients. 15 May 2007. Ritenour message. - 11. Klenerman L. The Tourniquet Manual. London: Springer; 2003. The only book on tourniquets which increase the risk of compartment syndrome somewhat especially if used incorrectly such as a venous tourniquet. - 12. Reis ND. Better OS. Mechanical muscle-crush injury and acute muscle-crush compartment syndrome: with special reference to earthquake casualties. J Bone Joint Surg Br. 87(4): 450-3, 2005. Late fasciotomy risks infection and mortality. #### References - 13. Walters TJ, Kragh JF, Kauvar DS, Baer DG. The combined influence of hemorrhage and tourniquet application on the recovery of muscle function in rats. J Orthop Trauma. 22(1): 47-51, 2008. Risk factors are interrelated. - 14. Mubarak S, Owen C. Double-Incision Fasciotomy of the Leg for Decompression in Compartment Syndromes. JBJS. 59-A, No.2, Mar 1977. - 15. Odland RM, Schmidt AH. Compartment syndrome ultrafiltration catheters: report of a clinical pilot study of a novel method for managing patients at risk of compartment syndrome. J Orthop Trauma. 2011 Jun;25(6):358-65. - 16. Joint Trauma System, Burn Care Clinical Practice Guideline, 11 May 2016. https://test.jts.amedd.army.mil/assets/docs/cpgs/JTS Clinical Practice Guidelines (CPGs)/Burn Care 11 May 2016 ID12.pdf Accessed Mar 2018 - 17. McGill R1, Jones E, Robinson B, et al Correlation of altitude and compartment pressures in porcine hind limbs. J Surg Orthop Adv. 2011 Spring;20(1):30-3. - 18. Kalns J, Cox J, Baskin J, Santos A, et al Extremity compartment syndrome in pigs during hypobaric simulation of aeromedical evacuation. Aviat Space Environ Med. 2011 Feb; 82(2):87-91. - 19. Gerdin M, Wladis A, von Schreeb J. Surgical management of closed crush injury-induced compartment syndrome after earthquakes in resource-scarce settings. J Trauma Acute Care Surg. 14 Jun 2012. - 20. Mathis JE, Schwartz BE, Lester JD, et al. Effect of lower extremity fasciotomy length on intracompartmental pressure in an animal model of compartment syndrome: the importance of achieving a minimum of 90% fascial release. Am J Sports Med. 2015 Jan; 43(1):75-8. - 21. Bible JE, McClure DJ, Mir HR. Analysis of single-incision versus dual-incision fasciotomy for tibial fractures with acute compartment syndrome. J Orthop Trauma. 2013 Nov; 27(11):607-11. - 22. Maheshwari R, Taitsman LA, Barei DP. Single-incision fasciotomy for compartmental syndrome of the leg in patients with diaphyseal tibial fractures. J Orthop Trauma. 2008; 22:723–730. - 23. Kragh JF Jr1, San Antonio J, Simmons JW, et al. Compartment syndrome performance improvement project is associated with increased combat casualty survival. J Trauma Acute Care Surg. Jan 2013; 74(1):259-63. # **Appendices** - **Appendix A**: Risks - Appendix B: Algorithm for Clinical Decision Making on Compartment Syndrome in a Deployed Setting - Appendix C: Compartment Syndrome Healthcare Record Data - Appendix D: Compartment Data Sheet - Appendix E: Operative Note Template - **Appendix F**: Additional Information Regarding Off-Label Uses in CPGs #### **Contributors** - LtCol Gordon Wade, USAF, MC - LtCol Max Talbot, RCMS, CAF - John Shero, MHA, FACHE - CDR Charles Osier, MC, USN - LTC Anthony Johnson, MC, USA - CDR Luke Balsamo, MC, USN - CAPT Zsolt Stockinger, MC, USN Slides: Maj Andrew Hall, MC, USAF Photos are part of the JTS image library unless otherwise noted.